Extensions 1→N→G→Q→1 with N=C22 and Q=S3xC20

Direct product G=NxQ with N=C22 and Q=S3xC20
dρLabelID
S3xC22xC20240S3xC2^2xC20480,1151

Semidirect products G=N:Q with N=C22 and Q=S3xC20
extensionφ:Q→Aut NdρLabelID
C22:(S3xC20) = C20xS4φ: S3xC20/C20S3 ⊆ Aut C22603C2^2:(S3xC20)480,1014
C22:2(S3xC20) = C5xDic3:4D4φ: S3xC20/C5xDic3C2 ⊆ Aut C22240C2^2:2(S3xC20)480,760
C22:3(S3xC20) = C20xC3:D4φ: S3xC20/C60C2 ⊆ Aut C22240C2^2:3(S3xC20)480,807
C22:4(S3xC20) = C5xS3xC22:C4φ: S3xC20/S3xC10C2 ⊆ Aut C22120C2^2:4(S3xC20)480,759

Non-split extensions G=N.Q with N=C22 and Q=S3xC20
extensionφ:Q→Aut NdρLabelID
C22.1(S3xC20) = C5xD12.C4φ: S3xC20/C5xDic3C2 ⊆ Aut C222404C2^2.1(S3xC20)480,786
C22.2(S3xC20) = C5xC8oD12φ: S3xC20/C60C2 ⊆ Aut C222402C2^2.2(S3xC20)480,780
C22.3(S3xC20) = C5xC23.6D6φ: S3xC20/S3xC10C2 ⊆ Aut C221204C2^2.3(S3xC20)480,125
C22.4(S3xC20) = C5xC12.46D4φ: S3xC20/S3xC10C2 ⊆ Aut C221204C2^2.4(S3xC20)480,142
C22.5(S3xC20) = C5xC12.47D4φ: S3xC20/S3xC10C2 ⊆ Aut C222404C2^2.5(S3xC20)480,143
C22.6(S3xC20) = C5xC23.16D6φ: S3xC20/S3xC10C2 ⊆ Aut C22240C2^2.6(S3xC20)480,756
C22.7(S3xC20) = C5xS3xM4(2)φ: S3xC20/S3xC10C2 ⊆ Aut C221204C2^2.7(S3xC20)480,785
C22.8(S3xC20) = Dic3xC40central extension (φ=1)480C2^2.8(S3xC20)480,132
C22.9(S3xC20) = C5xDic3:C8central extension (φ=1)480C2^2.9(S3xC20)480,133
C22.10(S3xC20) = C5xC24:C4central extension (φ=1)480C2^2.10(S3xC20)480,134
C22.11(S3xC20) = C5xD6:C8central extension (φ=1)240C2^2.11(S3xC20)480,139
C22.12(S3xC20) = C5xC6.C42central extension (φ=1)480C2^2.12(S3xC20)480,150
C22.13(S3xC20) = S3xC2xC40central extension (φ=1)240C2^2.13(S3xC20)480,778
C22.14(S3xC20) = C10xC8:S3central extension (φ=1)240C2^2.14(S3xC20)480,779
C22.15(S3xC20) = Dic3xC2xC20central extension (φ=1)480C2^2.15(S3xC20)480,801
C22.16(S3xC20) = C10xDic3:C4central extension (φ=1)480C2^2.16(S3xC20)480,802
C22.17(S3xC20) = C10xD6:C4central extension (φ=1)240C2^2.17(S3xC20)480,806

׿
x
:
Z
F
o
wr
Q
<